
Abstract  A MESFET and a two-dimensional
cavity enclosing a cylinder are simulated using a non-
uniform mesh generated by an interpolating wavelet
scheme. A self-adaptive mesh is implemented and
controlled by the wavelet coefficient threshold. A fine
mesh can therefore be used in domains where the
unknown quantities are varying rapidly and a coarse
mesh can be used where the unknowns are varying
slowly. It is shown that good accuracy can be achieved
while compressing the number of unknowns by 50 to
80 % during the whole simulation. This represents the
on going effort toward a numerical technique that uses
wavelets to solve both Maxwell’s equations and the
semiconductor equations. Such a method is of great
interest to deal with the multi-scale problem that is the
full wave simulation of an active microwave circuits.

I. INTRODUCTION

With the increasing flow of data in the
telecommunication world, the performances of high-
frequency devices have become more demanding. Typical
circuit simulators no longer represent the accurate tool to
characterize microwave circuits. Electromagnetic
simulators need to be used to tackle the problems of EM
interference such as packaging effects and coupling
between sub-circuits among others. The full wave analysis
of microwave circuits (Global Modeling) is a tremendous
task that requires involved numerical techniques and
algorithms [1]. It is to this date, unsuitable for circuit
optimizations and design. However there is the need to
develop a numerical technique that would allow global
modeling simulation to be used while designing circuits.
Due to the different scales of the active and passive parts
of a circuit, there is a need for a numerical technique that
would adaptively refine the mesh where it is needed. Such
a technique corresponds to a multiresolution analysis of
the problem. A very attractive way of implementing a

multiresolution analysis is to use wavelets [2]. It was
demonstrated [3] that finite difference schemes can be
derived using the method of moments with wavelet
expansions of the fields. The resulting numerical
technique has been called the Multiresolution Time
Domain Technique (MRTD)[4]. For non-linear equations
such as semiconductor modeling equations, wavelet
Galerkin method could become quite time consuming [5].
Therefore a different wavelet approach need to be used to
solve the equations characterizing the motion of the
electrons inside the active device.

We propose to generate a non-uniform mesh using an
interpolating wavelet scheme. The wavelet coefficients are
directly related to the physical domain as they represent
the error between the exact solution on the grid and the
interpolated value from the previous level. This scheme
allows us to multiply and differentiate very quickly. We
will follow the algorithm explained in [6] that has been
used to solve 1-D Maxwell’s equations in [7] and a 2-D
PN junction in [8]. We will use this scheme to solve a
two-dimensional cavity (TE case) enclosing a cylinder
representing a discontinuity inside the cavity. This
cylinder will allow us to see the refinement process that
occurs during the simulation. We will also present the
simulation of a typical MESFET.

II. TWO DIMENSIONAL CAVITY

The technique used was originally presented in [9]. A
set of dyadic grids that defines different resolution levels
is considered. A coarsest grid is defined, then a finer grid
is generated by introducing points half way between those
of the coarse grid. Values at odd grid points are kept
unchanged while values at even points are interpolated by
a polynomial of order three (p=4) or order one (p=2). The
so-called sparse point representation (SPR) of a function f
[6] can be created. We start with the coarsest grid, we
create an irregular mesh by computing the error between
the exact value of f on the coarse grid and the value
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obtained by interpolation. The error is the wavelet
coefficient. It carries the detailed signal. By removing the
points that can be interpolated, we greatly compress the
data. The compression depends on the threshold value set
as the minimum error for the interpolation procedure. All
the computations are then done on the irregular mesh.

A 2-D cavity was simulated according to the example
presented in [10]. The cavity is discretized by a mesh of
65*33 with a space increment dx=3.0 mm. The space
increment is dt=5.0 ps. Fig. 1 shows the y component of
the electric field at two different times.

Fig. 1. Electric field in the y direction, (a) t=520 ps, (b) t=840
ps.

We can see that at t=520 ps the wave did not reach the
cylinder yet, whereas at t=840 ps, the modes inside the
cavity are developing and scattering due to the cylinder is
occurring.

Fig. 2 shows the sparse point representation or in
other terms, the non-uniform mesh generated by the
scheme at the same times than Fig.1. This demonstrates
the self-adaptibility of the mesh which gets finer in
regions where the fields are varying rapidly. At t=840 ps,
scattering due to the cylinder needs to be modeled
accurately therefore more points are used around the
cylinder.

Fig. 2. Sparse point representation of the y component of
the electric field at (a) t=520 ps and (b) t=840 ps

Fig. 3. Number of unknowns remaining in the SPR for three
different value of wavelet threshold.

At every time step this non-uniform mesh is generated
by the wavelet scheme. Thus the number of unknowns
varies in time. Fig. 3 shows this behavior. Three wavelet
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thresholds are used. We can see that as the threshold gets
smaller, more points need to be used in the mesh. The
error computing during the interpolation needs to be
smaller thus finer mesh are used.

III. MESFET SIMULATION

In order to simulate sub-micrometer gate length
transistors that are used at high frequencies, a full
hydrodynamic model must be used.

This model is based on the moments of Boltzmann’s
transport equations obtained by integration over the
momentum space. Three equations need to be solved
together with Poisson’s equations in order to get the quasi-
static characteristics of the transistor. This system of
coupled highly nonlinear partial differential equations is as
follows: current continuity (1), energy conservation (2)
and momentum conservation for the x-component (3).

(1)

(2)

 (3)

Where n is the carrier density, v the velocity, ε the
energy, E the electric field, m* the effective mass, kb the
Boltzmann’s constant, T the temperature and τm , τε  the
momentum and the energy relaxation time.

The solution of this system of partial differential
equations represents the complete hydrodynamic model.
Simplified models are obtained by neglecting time and/or
space derivatives, the so-called inertia effects, in the
momentum equation (3).

At the early stage of this work, a drift diffusion model
is derived by assuming that the momentum is given by (4).
Where the momentum relaxation time is obtained
assuming that the mobility is a function of the electric
field (5).

(4)

(5)

A MESFET with the following dimensions is
simulated: 0.6 µm gate length, 1 µm long source and drain
electrodes, 1 µm source-gate gap, 1 µm gate-drain
separation, 1.2 µm deep active layer. The doping of the
active layer is 1.2×1017 A/cm3 and the buffer layer has an
electron concentration of 1×1014 cm-3.

In Fig. 4, the I-V characteristics of the simulated
MESFET are shown. The MESFET exhibits conventional
dc characteristics which demonstrates the potential of this
scheme.
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Fig. 4. I-V Characteristics of the simulated MESFET

As shown in Fig. 3, this scheme allows us to use
different mesh depending on how the unknown quantities
vary. At the beginning of the simulation the carrier density
are initialized to the doping profile so the irregular mesh is
really coarse, as time evolves the depletion region starts to
be created and more points are needed to describe it.

This illustrates the dynamic behavior of the mesh.
The SPR can be generated by wavelets of different order.
Numerical simulation were performed using p=4 and p=2.
Fig. 5 demonstrates that for ε =0.01 and ε =0.001, the
linear interpolation achieves a better compression ratio
than the cubic interpolation. For ε =0.0001 however, it is
the opposite. It is our understanding that this breaking
point is a function of the wavelet threshold, the bias point
and the physical dimensions.
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Fig. 5.  Mesh Adaptability for three different values of
wavelet threshold. ( blue lines p=2 , red lines p=4)

As the number of unknowns can be compressed this
technique is expected to reduce the computation time. But
the error must be kept small. In other terms the currents
must be the same as the ones obtained from standard finite
difference. Fig. 6, shows the relative error on the drain
current for the three threshold values presented in Fig 5.
We can see that for ε = 0.001 the error is around 4 %. As
the threshold gets bigger the mesh is coarser and the error
grows. Finally, good compression can be obtained
together with good accuracy.

Fig. 6 Relative Error on the drain current for three different
values of wavelet threshold. ( blue lines p=2 , red lines p=4 )

IV. CONCLUSION

A non-uniform mesh is generated by a wavelet-based
approach. The interpolation wavelet scheme used allows
the implementation of a self-adaptive mesh in time. It is
shown that the threshold coefficient controls the
compression ratio and therefore the accuracy compared to
a standard finite difference scheme. A MESFET has been
simulated using this scheme, 83 % compression in the
unknowns is obtained with an accuracy of 4 %.
Computation time is expected to be reduced dramatically
with this scheme. The same characteristics can be obtained
for electromagnetic problems.
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